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Twisted symmetry breaking on the projective hypersphere: 
a model of the small cosmological constant 

S D Unwin? 
Department of Theoretical Physics, University of Newcastle upon Tyne, NE1 7RU, UK 

Received 21 August 1981 

Abstract. A model is considered in which the gravitational action effectively depends upon 
the symmetry-broken vacuum state associated with a twisted scalar field theory. It is 
suggested that our observation of a small cosmological constant, despite predicted vacuum 
contributions typically of the order low6 cm-*, is a consequence of our location in the 
universe. 

1. Introduction 

In a recent paper (Davies and Unwin 1981, hereafter referred to as I), a model was 
considered in which the cosmological ‘constant’ depended upon the symmetry-broken 
vacuum state of a Goldstone-type theory where the constituent scalar field carried a 
non-trivial representation of the group of the underlying space-time manifold (see 
Isham (1981) for a discussion of topology and symmetry breaking). The only constant 
twisted scalar field is that which vanishes globally and consequently the cosmological 
term was, in the symmetry-broken phase of the field theory, position dependent. It was 
suggested that such a mechanism could account for the small cosmological constant (the 
upper limit, consistent with observation, being cm-’) despite the fact that modern 
Higgs-Goldstone theories would predict a typically microphysical value for this quan- 
tity (see, for example, Coleman and De Luccia 1980). The twisted field theory 
considered in I implied that the cosmological constant, or more precisely the cosmolo- 
gical field, is typically of a microphysical value, yet of necessity we inhabit an atypical 
region of the universe where the value is close to zero. 

The analysis in I pertained to a two-dimensional space-time in which the exact 
vacuum solution for the self-interacting field equation was known, and this merely gave 
a qualitative impression of the type of behaviour to be expected in a more realistic 
four-dimensional space-time model. Here, we consider just such a model in which the 
spatial sections of the space-time are isotropic, locally isometric to the three-sphere and 
yet admit non-trivial real scalar field configurations. 

We begin by presenting details of the mechanism which leads to the possibility of 
position-dependent cosmological, and indeed Newtonian, gravitational G terms, start- 
ing with the total classical action S, where 

s = SI + s* -k s3, ( l a )  
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J 

SZ = I d4x J ~ Y ? ( A , ,  +, . . .) 
and 

S3=- d4x J<(R -2A0). 
167rGo 

As usual in such models of symmetry breaking, the mass term in SI assumes the wrong 
sign, and for more generality we include a term coupling the real scalar field, 4, to the 
scalar curvature of the space-time, R, such that when m = 0 and 5 = $, the resultant 
wave equation for q5 is conformally invariant. S2 is the action for all other matter fields 
present, while S3 is the gravitational action in which A. and GO are constants. As usual, 
g = det g,,. 

The vacuum solution of the field equation resulting from the variation of SI with 
respect to 4, we denote as U, and define a new field variable measured from the vacuum: 

@=c$ -0.. (2) 
Variation of S with respect to the metric then yields the gravitational field equations 

T,v(q5’,A,, tcI,. . . ) =  - ( 8 7 r G ) - ’ ( g , , A + R , , - ~ g , ~ ) + X , ,  (3) 

G = F ( u ) G ~ ,  (4a) 

(46) 

x , ,=(25-i)a ,~ag+25av,  a g ,  (4c ) 

F(u) = ( 1 - 8 T(Gou’)- ’, ( 4 4  
R,, is the Ricci tensor and V, a covariant derivative. Our justification for selecting this 
particular arrangement of equation (3) is as follows. 

In such models, the vacuum, U, is interpreted as a classical ‘condensate’ of scalar 
particles (Kirzhnits and Linde 1976) and the field representing the matter present, that 
is, the field to be quantised, is 4‘. Hence, equation (3) is arranged such that the 
potentially quantum fields (those contributing to the stress tensor) are on the left. We 
observe that equation (3) is of the form of the Einstein field equations with an additional 
term, X,,, present as a consequence of enriched geometrical structure induced by the 
possible space-time inhomogeneity of the vacuum. From equations (3) and (4) it is not 
difficult to see that in the symmetric phase of the scalar field theory, U = 0, A0 and GO 
may be identified with the cosmological and Newtonian constaats respectively, whereas 
in general their roles are taken by the fields A and G. Such models have been 
considered by Kirzhnits and Linde (1976), Canuto and Lee (1977), Linde (1980) and 
Davies (19Sl), where the vacuum state may be a function of time through a temperature 
dependence; however, these untwisted field theories shed little light upon the problem 
of such precise cancelling in the symmetry-broken phase (assumed to prevail today), 
between the symmetric phase cosmological constant, Ao, and the vacuum contributions 
(typically cm-’ for the Weinberg-Salam model) to obtain an upper bound on A 
of io-’’ cm-’. 

where 

A = F ( c ) A O  + 2 ~ F ( ~ ) G ~ [ 2 ( 4 5  - l)a,cr a”U + ~ & O U  -2m2a2 + AU~], 
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2. The twisted vncuum state 

The initial problem is to select a space-time, the underlying manifold of which admits 
twisted field configurations, yet which is not of such a perverse topological structure as 
to call immediately for its exclusion from the list of candidates for a plausible model of 
the real universe. The space-time chosen for our investigations is W'(time) OP3(space) 
where P3,  the projective three-sphere, is obtained from S 3  by identifying antipodal 
points. It is one of a more general class of spaces covered by the three-sphere known as 
lens spaces, S3/Z, (Seifert and Threlfall 1934), upon which quantised scalar (Dowker 
and Banach 1978), spin-; (Kennedy and Unwin 1980) and higher-spin fields (Unwin 
1980) have been investigated elsewhere. All such spaces are homogeneous and for 
n = 2 (P'), the space enjoys the same global group of isometries, S0(4), as S3.  Despite 
the physically realistic properties of this space-time, which is not only locally indis- 
tinguishable from the Einstein universe, but also isotropic, we observe that 

H'(P3, Z2) = zz 
where H'(M, Z,) labels the inequivalent real line bundles over the manifold M, and 
hence conclude that R' 0 P 3  admits twisted field configurations (Isham 1978). 

Goldstone theories have been explored at a quantum level in the Einstein universe 
(Toms 1980), a slightly anisotropic or 'squashed' version of R ' 0 S 3  (Critchley and 
Dowker 1982) and quotient space-times of W'0S3 (Kennedy 1981), the important 
difference between these analyses and ours being that the symmetry-broken vacuum 
states of untwisted field theories (the only types allowed in the former two cases and the 
only types dealt with in the last) may be constants, whereas the antiperiodicity 
conditions associated with twisted fields exclude the possibility of non-zero constant 
vacua. We should mention here that Toms (1981) has investigated a twisted 44 theory 
on W' 0 P 3  in which symmetry breaking did not occur, thus precluding the question of 
non-constant vacua. 

Our starting point is the action S1 of equation (1 b) ,  where it is now understood that q5 
is a twisted field and the integral is over the space-time W'0P3. A derivation of the 
exact symmetry-broken vacuum state for 4 would call for a knowledge of the solutions 
of the field equation resulting from S1; however there is a particularly elegant method, 
due to Banach (1981), for approximating the twisted vacuum, the validity of this 
approximation increasing as the phase transition is approached. Encouraged by the 
impressive correlation, at a classical level, between the results of this method and the 
previously known exact vacuum solutions derived by Avis and Isham (1978) for a 
two-dimensional space-time model, we adopt the technique in our four-dimensional 
analysis, referring the reader to the original paper for a detailed account of the method. 

It is convenient to consider our field theory defined upon a multiply connected 
space-time as an automorphic field theory on the covering, R ' 0 S 3 ,  (Dowker and 
Banach 1978) where the global constraints imposed are 

(6) 

Here, x is a point on S3,  y generates an SO(4) rotation to the antipodal point and the 
minus sign, a one-dimensional representation of the group factoring S3 to obtain P3, 
indicates the condition that the field be twisted. Note that, strictly, we should dis- 
tinguish between the field defined upon the quotient space-time, R 1 0 P 3 ,  and that 
defined upon the covering; however, no ambiguities should arise as a consequence of 

#(w, t )  = -44x9 0. 
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this laxity. The vacuum state for this model may now be approximated to be propor- 
tional to the static eigenfunction corresponding to the lowest eigenvalue of the 
space-time derivative part of the second functional derivative of the action, SI. The 
approximate vacuum state, G, is therefore proportional to the real static solution of 

(az/at2 - Az)f= Kf, (7) 
where Az is the Laplace-Beltrami operator on the spatial section, such that K is 
minimised while (6) is respected. For this particular case, the f’s are no more than the 
eigenfunctions of the operator associated with the field equation derived from the 
quadratic parts of S1, since the inclusion of the mass and conformal coupling terms on 
the left of (7) (the space being of constant curvature) would only serve to shift all the 
eigenvalues by the same amount. Were the curvature not constant, whether conformal 
terms should be included in the eigenvalue equation may presumably be ascertained by 
example. We adopt the standard hyperspherical coordinate system of line element 

ds2 = dt2-az[dX2+sin2X(d8*+sin2 8 dp2)] (8) 

where a is the radius of S3 ,  and find for the relevant four K-degenerate solutions of (7), 

Gi=A1 COSX, (9a) 
G2 = A2 sin x cos 8, 

G3 = A3 sin x sin 8 cos p, 
G4 = A4 sin x sin 8 sin p. 

It would appear, at first glance, that we have four different possible candidates for 
the vacuum solution; however, we recognise that if Ai were replaced by a, Gz would be 
no more than the familiar Cartesian coordinates associated with the embedding of S 3  in 
four-dimensional Euclidean space. That is, the depend purely upon the radial 
(geodesic) distance from a point (different for each i) on P3. The four vacua are 
therefore entirely equivalent via spatial rotations, and indeed, being at liberty to 
orientate the hyperspherical coordinate systems in any manner we wish, we deduce that 
there is an infinite number of equivalent candidates for the vacuum state, each 
depending only upon the radial distance from a different point on P3, henceforth 
referred to as the ‘centre’. This is precisely analogous to the situation considered by 
Avis and Isham (1978) in which there exists an arbitrary phase along the spatial circle in 
their twisted vacuum field solution on the space-time R’OS’. 

Having estab€ished the spatial dependence of the possible vacua, we proceed to 
determine the magnitude of G, and in accordance with the work of Banach, generalise 
the usual definition of the effective potential to encompass the twisted field sector. The 
generalised definition is 

V ( A )  = -(VOL)-’r(6), (10) 
where A is the amplitude of 6, VOL is the space-time volume and r(6) is the effective 
action, evaluated at 6. Without loss of generality, we choose the ‘centre’ to coincide 
with x = 0 such that G = A cos x, and at the tree graph level (to which we confine our 
attention here), r(6) is obtained by evaluating St at Cp = 6 to yield the expression 

V(A) = &hA4-4m2A2+ 12A2(25+ l)/uz]. (11) 

We discover that if a < m-’[3(2& + l)]’”, the minimum of V occurs at A = 0, otherwise 
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occurring for some finite value of A, or, more precisely, the approximate vacuum 
solution is given by 

6 = 0  if a s m-’[3(2(+ l)]’”, (12a)  

6 =A’  COS ,y if a 3 m-’[3(25+ I ) ] ” ~ ,  (12b)  

The field theory, we see, displays a phase transition at some critical radius, the vacuum, 
6, being uniformly continuous in a. To determine exactly how good an approximation 
to the true vacuum solution G is, we need only reinsert the latter into the wave equation 
for 4 in order to evaluate the associated source current, J. We have, in general, with a 
source present, 

(O-m2+@? +A+’)c$ = J ( 4 )  (13) 

where, of course, for the true vacuum solution, J = 0. The insertion of 6 into ( 1 3 )  yields 
the expression 

J ( 6 )  = $AA3 cos ,y cos 2,y (14)  

and we conclude that 6 = 0 ( A  = 0) is the exact symmetric phase vacuum, whereas 6 is 
an increasingly good approximation to the true symmetry-broken vacuum as A = A’ + 
0, that is, as the phase transition is approached. Banach (1981) argues that in cases 
where the vacuum solution is uniformly continuous through the phase transition, the 
critical radius should be exact since at this radius, the vacuum is exactly zero and small 
deviations of 6 from the true vacuum at slightly greater radii are insignificant to the 
order considered. 

It may be of interest to compare equation (12) with the vacuum stability criteria 
associated with the untwisted field theory of action S1 on R’0P3.  The vacuum is 
classically exact and identical to the R ’ 0 S 3  case: 

u = o  if a 4 R Z - ’ ( ~ ( ) ’ ’ ~ ,  (15a)  

U = ( l / a ) ( l / h ) ’ / 2 ( m 2 a 2 - 6 ~ ) ’ ’ 2  if a 3 m-’(6()’’’. (15b)  

We observe that at this classical level the untwisted field theory, unlike the correspond- 
ing twisted theory, requires a non-zero conformal coupling constant, [, for there to exist 
a symmetric, U = 0, phase. 

3. The gravitational field equations 

It is now straightforward to obtain approximate expressions for the effective Newtonian 
and cosmological fields along with X,, in the symmetry-broken phase of the twisted 
theory, it being understood that the approximation improves as the transition is 
approached. The insertion of (12b)  into ( 4 )  yields 

G =F(A‘  COS x)Go, (16a)  

x [cos4 ,y(m’a* - 3 - 65)  + cos’ ~ ( 1 6 5  - 1 - m2a 2, + 1 - 461 (16b)  

A = F(A’ cos x)A0 + ~ T U - ~ G ~ A ” F ( A ’  cos ,y) 
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where 

F(A’ cos x) = { 1 - ( 16.rrgGo/Au2)[m ’ U  ’ - 3 (25 + l)] cos’ *}-I (16c) 

and the non-vanishing components of X,, are 

X,, = A”[(45 - 1) sin2 x - 251, 

X,, = -$,$A” sin’ 2x sin2 8. 

Xee = -$[A” sin’ 2x, 

The complete solution of equation (3) would now, in principle, entail an iterative 
procedure in which equation (3) is solved for the metric, the new vacuum associated 
with the scalar field for this metric determined, reinserted into equation (4) and the 
procedure repeated until self -consistency is attained. 

We now investigate the forms of G, A and X,,, confining our attention to the 
minimally coupled case (5 = 0), where equation (16) reduces to 

G = Go, i17a) 

A=A~-rG0a-’A‘~[(m’a’-3)sin’ 2x+4(1+2 C O S ~ X ) ]  (17b) 

and the only non-vanishing component of X,, is 

x,, = -A” sin’ x, ( 1 7 ~ )  

A’ being evaluated at ,$ = 0. There is no unique way to cover P 3  with the hyperspherical 
coordinate system, and one option is to allow 8 and p to assume their full S3 ranges 
while x varies only from 0 to r/2. The spatial dependence of G is trivial, that of X,, is 
not difficult to visualise, and hence we direct our attention to a description of the 
cosmological field, A. We have 

(18a) Al(0) = -3A1(r/2) = (-24.rrGo/Aa4)(m2aZ- 3) 

If 3 s m’a’ c 7, the lower limit reflecting the lower bound on the range of validity of 
(17), then A, is maximised at x = r / 2  and minimised at x = 0. If m2u2>7, the validity 
of (17) in this range being discussed in the following section, then A1 is maximised at 
both x = 0 and .rr/2, a minimum occurring at cos 2x = 4(m2u2 - 3)-’, where 

AY = (-2rGO/Au4)(m4u4-2mzaz+ 13). (19) 

For comparison, we present the classically exact expression for the cosmological 
constant, A,, of the corresponding untwisted, 5 = 0 field theory in the symmetry-broken 
phase: 

(20) A, = A. - 2.rrGom4A-’. 

We mention that although, classically, there is no symmetric phase in the 6 = 0 
untwisted field theory, thermal and quantum corrections to the effective potential 
modify the vacuum stability criteria (see, for example, Canuto and Lee 1977). 
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4. Discussion 

We summarise the important features of the model considered. Having introduced a 
twisted Goldstone field theory upon the space-time R'0P3, we discovered that in the 
symmetry-broken phase of the former, the vacuum state did not enjoy the homogeneity 
and isotropy enjoyed by the underlying space-time manifold. This resulted not only in 
additional terms appearing in the usual gravitational field equations, but effective 
cosmological and Newtonian fields which depended upon the geodesic distance from 
some fixed point on P3.  

Our wish is to reconcile the properties of this model with present observations which 
favour an extremely small cosmological constant. Initially, we recognise that the radius 
of P3 must be many orders of magnitude greater than the Hubble radius to ensure that A 
is approximately constant over observable distances, a fact consolidated by the absence 
of observed systematic gravitational disruption. This would appear to place a well 
outside the range over which our approximation of the vacuum state is a good one. 
However, the good qualitative correlation between the approximate and exact vacua in 
the R'OS' model considered by Banach (1981), even well away from the phase 
transition, encourages us to investigate further the form of equation (17b) for large ma, 
to obtain order of magnitude estimates on the range of A (this being all of which we are 
capable anyway), and to approximate its spatial dependence. Attention will be 
confined to the 5 = 0 case and from equations (18) and (19) we see that for ma >> 1, A1 
has two sharp maxima, only becoming positive close to 7r/2 (crossing zero at cos 2x J 

( 5  -m2a2)(m2a2-3) - ' ) .  Inserting the values of m and A associated with Weinberg- 
Salam theory (Weinberg 1976) into equation (18a), we conclude that A1(7r/2), the 
maximum value of AI,  must be positive and many orders of magnitude less than 

cm-'. The minimum of AI, occurring at approximately x = 7r/4, has a value 
independent of a and equal to Au - A,, the vacuum contribution to the cosmological 
constant in the untwisted field theory. Again, inserting typical numbers, we find that 

In the case of the untwisted theory, it is not difficult to see where problems arise in 
accounting for the small cosmological constant favoured by observation. Extremely 
fine tuning between A,, the cosmological constant in the symmetric phase, and the 
vacuum contributions to A, would be demanded in order to obtain a realistic value of 
the symmetry-broken phase cosmological constant of less than lo-'' cm-2. An 
anthropic explanation of such tuning may, of course, be offered. If such precise 
cancelling did not occur, we should not be here to ponder such matters since a huge 
cosmological constant would dominate gravitational dynamics, precluding the forma- 
tion of galaxies and hence life. The twisted field theory considered here, however, 
suggests a rather different approach to understanding the observed small cosmological 
constant. The latter may more accurately be described as a cosmological field, the 
magnitude of which depends upon the radial distance (it being assumed that this is a 
property of the exact, as well as the approximate vacuum) from some point on the 
spherical spatial section. The only constraint we need impose upon A. is that it be in a 
range such that A is somewhere close to zero. For the approximation developed here, 
A0 = 0 is within that range, and indeed, if we require the gravitational field equations to 
assume their familiar form locally, that is X,, = 0, then x = 0 would be the suitable 
candidate for our own location where the effective cosmological constant (for A, = 0) 
would be many orders of magnitude less than loe9' In this case, it is perhaps 
amusing to note that our model places the philosophy of anthropocentrism, an idea so 
vigorously rejected by the conventional scientific wisdom, in a new light. 

11 ;oin - - 1 o - ~  Cm-2, 
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An accurate assessment of the space dependence of A would, of course, require a 
knowledge of the exact symmetry-broken twisted vacuum state, entailing the solution 
of equation (13) for zero source current. However, from the approximation employed 
here, it is clear that in such models, altering the global structure assigned to the scalar 
field, even when its local dynamical constraints remain unchaaged, has the effect of 
modifying, radically, the resultant gravitational field equations. Here, we have 
highlighted the aspects of a twisted field theory which are, in many ways, preferable to 
those of the corresponding untwisted theory. 
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